Design, synthesis and preclinical evaluation of 5-methyl-N4-aryl-furo[2,3-d]pyrimidines as single agents with combination chemotherapy potential

Bioorg Med Chem Lett. 2018 Oct 1;28(18):3085-3093. doi: 10.1016/j.bmcl.2018.07.039. Epub 2018 Jul 27.

Abstract

The design, synthesis and biological evaluation of 4-substituted 5-methyl-furo[2,3-d]pyrimidines is described. The Ullmann coupling of 5-methyl-furo[2,3-d]pyrimidine with aryl iodides was successfully optimized to synthesize these analogs. Compounds 6-10 showed single-digit nanomolar inhibition of EGFR kinase. Compounds 1 and 6-10 inhibited VEGFR-2 kinase better than or equal to sunitinib. Compounds 1 and 3-10 were more potent inhibitors of PDGFR-β kinase than sunitinib. In addition, compounds 4-11 had higher potency in the CAM angiogenesis assay than sunitinib. Compound 1 showed in vivo efficacy in an A498 renal xenograft model in mice. Multiple RTK and tubulin inhibitory attributes of 1, 4, 6 and 8 indicates that these compounds may be valuable preclinical single agents targeting multiple intracellular targets.

Keywords: Angiogenesis; Combination chemotherapy; Furo[2,3-d]pyrimidines; Structure-activity relationships; Tubulin inhibitors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / metabolism
  • Humans
  • Mice
  • Molecular Docking Simulation
  • Molecular Structure
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / pathology
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Pyrimidines / chemical synthesis
  • Pyrimidines / chemistry
  • Pyrimidines / pharmacology*
  • Receptor, Platelet-Derived Growth Factor beta / antagonists & inhibitors*
  • Receptor, Platelet-Derived Growth Factor beta / metabolism
  • Structure-Activity Relationship
  • Vascular Endothelial Growth Factor Receptor-2 / antagonists & inhibitors*
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Pyrimidines
  • EGFR protein, human
  • ErbB Receptors
  • Receptor, Platelet-Derived Growth Factor beta
  • Vascular Endothelial Growth Factor Receptor-2